Search

Introducing Rads on a Plane

Updated: Oct 3, 2018


Welcome to Rads on a Plane! Today marks the "soft launch" of our platform, on which we are excited to showcase our ongoing research on radiation aviation and give you the first opportunity to interact with our data.


We invite you to first read the article below on our latest results on cosmic radiation exposure on airline routes around the world. Then be sure to explore our recent blog posts, including our post introducing our E-RAD Aviation Model and the worsening cosmic ray situation.


On the site itself, you can explore our Daily Hot Flights table that monitors approximately 1400 flights criss-crossing the 10 busiest routes in the continental USA on a daily basis, and our Interactive Flight Data Table, where you can find estimated radiation doses for individual flights.


We welcome your comments and feedback. As the weeks progress, we will provide regular updates, continue to improve our content and ultimately, add services to our site. Thank you for visiting Rads on a Plane!



Rads on a Plane: New Results

First published on Spaceweather.com by Tony Phillips


Sept. 18, 2018: Many people think that only astronauts need to worry about cosmic radiation. Not so. Ordinary air travelers are exposed to cosmic rays, too. Every day, radiation from deep space enters Earth’s atmosphere and penetrates the walls of aircraft. A recent study from the Harvard School of Medicine found that flight attendants have a higher risk of cancer than members of the general population, and the International Commission on Radiological Protection has classified pilots as occupational radiation workers.


How much radiation do you absorb? Spaceweather.com and the students of Earth to Sky Calculus have been working to answer this question by taking cosmic ray detectors onboard commercial airplanes. Flying since 2015, we have collected more than 22,000 GPS-tagged radiation measurements over 27 countries, 5 continents, and 2 oceans.


(A) A global overview of our flights. This map shows where we have been. (B) To show the density of our data, we zoom in to the Four Corners region of the USA. There are three major hubs in the map: Phoenix, Las Vegas and Denver. You can't see them, however, because they are overwritten by pushpins.

Here is what we have learned so far:

  1. Radiation always increases with altitude, with dose rates doubling every 5000 to 6000 feet. This make sense: The closer you get to space, the more cosmic rays you will absorb.